Kisokos

- A GYÓGYNÖVÉNYEKRŐL,
- A FULVOSAVRÓL,
- A FULVOSAV-ARGININ KOMPLEXRŐL,
- A FULVOSAV PARAJDI SÓ KELÁTRÓL,
- AZ ALMAAPEKTINRŐL.
MEGOLDÁS A PROBLÉMÁK KEZELÉSÉRE

A modern kor táplálkozás élettani problémái, kritikus pontok a táplálkozásunkban.

Az emberi szervezet szoros kapcsolatban van a környezetével, amely az elmúlt 100 évben nagyot változott. Nem abban a környezetben élünk, amelyben az elmúlt évezredekben kialakult az ember. A modern megbetegedések tulajdonképpen a megváltozott környezet (megváltozott táplálékok és táplálkozási szokások, a mozgásszegény életmód) miatti alkalmazkodási zavarok. Ezek okozzák az emberek általános rossz közérzetét, gyakori fejfájását, fáradékony-ságát, magas vércukorszintet, váltanak ki metabolitikus szindrómát, magas vérnyomást, inzulinrezisztenciát, emésztés-élettani problémákat, az immunrendszer működésének a zavarát, amelyek következményeként növekszik a daganatos kockázat és fokozódnak az autoimmun betegségek előfordulása.

Még nem teljesen látjuk a sérült mikrobiom (az eubiotikus bélflóra diszbiotikussa válásának) következményeit a testi és mentális problémák kialakulásában.

Az evolúciós orvoslás, mint új keletű tudomány ebben az összefüggésben vizsgálja a modern táplálkozás élettani problémák kialakulását.

A tudományos közlemények számos élelmiszer alkoitó neveznek meg a modern megbetegedések kialakulásának okaként, melyeknek a jelenléte nem kedvező az élelmiszer-rekben, vagy a túl nagy mennyiségben való használata okozza a problémát.

- Kovászos kenyér helyett adalékos kenyér, a glutén, a WGA (búzacsíra agglutinin) fehérje és a FODMAP bélboholy károsító hatása a szivárgó bélszindróma létrejöttében.
• A WGA fehérje, mint lektin szerepe az autoimmun betegségek kiváltásában.

Szója és szójafehérje hidrolizátumok fitoösztrogén hatása.

• A GMO-s szója glifozát kockázata, hatása a bél diszbiózisra, szerepe a máj- és vesekárosodásban.

• Indirekt GMO-s szója probléma, az ipari takarmányon nevelt sertés és baromfi húsának glifozát tartalma hasonló problémákat okoz, mint a direkt GMO-s szója hatás.

• Pálmaolaj és pálmazsír, valamint az ebből származó margarinok, sütőmargarin negatív hatása, a transzszírok okozta problémák.

• Aminosavak, mint ízfokozók alkalmazásának negatív következménye a sima izmok működésére, a vérkeringésre, a vese működésére, az inzulin rezisztenciára, a sebgyógyulásra és az immunrendszer szabályos működésére.

• Miért van egyre több probléma a tejjel? A tej savófehérje, mint Janus arcú fehérje komoly szerepet játszik az autoimmun betegségek kialakulásában. Az adalékos kenyér által kiváltott szivárgó bél szindróma a szükséges feltétele az autoimmun probléma létrejöttének. A tehéntej savófehérje az antigén a gyulladásos folyamat kiváltásában.

• Az emésztőrendszerünk, az enzimrendszerünk nem tud alkalmazkodni a minőségében és mennyiségében megváltozott táplálék összetevőkhöz, melyeknek az emésztése során az ember számára emészthetetlen káros intermedier anyagcsere termékek, pl. biogén aminok képződnek.
• A fruktóz és a glükóz monoszacharidok, bár sokan „könnyen felszívódó szénhidrát”-nak gondolják, a limitált felszívódása révén a belben marad, a fel nem szívódott monoszacharid a bédizadoszis egyik kiváló oka.

Albert Einstein gondolata kívánkozik ide:
„Az űrültség nem más, mint ugyanazt tenni újra és újra, és várni, hogy az eredmény más legyen.”

1. Ha nem változtatunk a táplálkozási szokásainkon, akkor ne várjuk, hogy kevesebb egészségügyi problémánk legyen.
2. Tudnunk kell, hogy mit tegyünk másként, így érhetünk el pozitív eredményt.

EBBEN SEGÍTENEK AZ ÉLETTANILAG AKTÍV GYÓGYNÖVÉNYEK ÉS TERMÉSZETES ANYAGOK:
- a gyógynövény modul,
- a fulvosav modul,
- a fulvosav L-arginin komplex modul,
- a fulvosav és sóiszapos parajdi só kelát modul,
- az almapektin prebiotikum modul.

A gyógynövény modul hatása többféle:

• A bélbaktériumok kontrollálása. Az egészséges eubiotikus bélflóra állapot fenntartása, a Small intestinal bacterial overgrowth (SIBO), a káros bélbaktériumok túlszaporodásának megelőzése. A hasznos bélbaktériumokkal szembeni tolerancia és a káros bélbaktériumok szaporodásának gátlása.

• Gyomor- és bélnyálkahártya védelem.

• Emésztőnedv termelődés segítése gyógynövényekkel.
• Máj-, valamint vesevédelem és regenerálás, a szervezetet ért káros gombatoxin és xenobiotikum hatás kivédése a máriótövis szilimarín és szilibinin hatóanyagainak segítségével.

• A fekete áfonya levél főzetnek a vérkeringés, a vérnyomás szabályozásának segítésében, a vérererek endothel sejtjeinek NO funkciójának megvédése révén van szerepe. A fekete áfonya még az időskori endothel funkciót is javítja. Az immunrendszert is segíti.

• Az édeskömény és az ánizs termése fokozza a vizelet kiválasztást, az illóolajainak a hatóanyagai a húgyutakban baktérium fejlődést gátló hatást fejtenek ki, vesekő képződést gátlóak.

• A csipkebogyó természetes C-vitamin és Rutin (P-vitamin) forrás, természetes roboláló.

Mezei sóska, Rumex acetosa L

Nagy csalán, Urtica dioica L.

A levélben klorofill, karotinoidok, A-,C-,K-,U-vitamin, triterpének, glükokinin, szterolok, flavonidok (kvercetin, kempferol izoramnetin) és ásványi anyagok találhatók. Vizsgálták a kvercetin hasmenés ellenes és gyulladásgátló hatását. Képesek gátolni a bél falának a szekrécióját, a gyulladást kiváltó kémiai mediátorok (hisztamin, szerotonin, és prosztaglandínok) termelődését. Ennek alapján a nem fertőző okból kialakuló szekréciós hasmenést megszünteti a

Orvosi székfű, Matricaria recutita L.
Belsőleg a kamillát a tápcsatorna gyulladásos elváltozása esetén használják leginkább. Jótékony hatása van a gyomor nyálkahártya gyulladásban (gastritis), a vékonybél gyulladásban (enterocolitis) és a vastagbél gyulladásban (colitis).

A virágzata a Chamomillae anthodium a drog. Két hatóanyag csoportja van. Egyik az illóolaj típusú szeszkviterpépén szénhidrogén (kamazulén) és a szeszkviterpé-alkohol (biszabolol), melyek gyulladáscsökkentőek, a másik csoportba pedig a nem illékony flavonoidok tartoznak. A kamilla virág vizes oldata gyulladáscsökkentő hatású, csökkenti a szervezet érzékenységét a hisztaminnal szemben. Ezen tulajdonsága révén jó hatása van a szekréciós hasmenés esetén.

Orvosi zsálya, Salvia officinalis L.
A növény szárított levele illóolajokat, diterpén-karbonsavakat, polifenolokat és romaringsavat tartalmaz. Farmakológiai hatása: a nyálkahártyák gyulladását mérséklik, összehúzó (adstringens) hatásúak, hasmenést gátló, antibiotikus hatású anyagokat tartalmaznak (karnozol, pikroszalvin).
Poracova, Taylorova, Salamon (2009) A nyitrai és az eperjesi egyetemen vizsgálták az orvosi zsálya antimikrobiális és hasmenés ellenes hatását, Kedvező antimikrobiális hatású volt a fitoterápia, szignifikánsan csökkent a káros enterobakteriumok száma a bél tartalomban.

Fekete áfonya, Vaccinium myrtillus L.

A Kárpát-medencében az erdélyi és a felvidéki Kárpátok gyümölcsé és gyógynövénye. Levele, zöld hajtása katechotanninokat, proantocianinokat tartalmaz.

A cserzőanyagok antibiotikus tulajdonsága alapján hasmenéses állapot kezelésére használják (Rácz, Rácz-Kotilla, Szabó, 2012).

Édeskömény, Foeniculum vulgare MILL.

Ánizs, Pimpinella anisum L.
Droga a növény ikerkaszat termése. Az ánizs hatóanyagainak hatása az édesköményre hasonlít, azzal sziner-gizál. Hatóanyaga a 3,0-6,0 % illóolaj, melynek 80-90 % anetol és esztregol. A légző- és kiválasztó szervrendszerben is kiválasztódik a hatóanyag.

Máriatövis, Silybum marianum L.
A máriatövis májvédő komponens fő hatóanyaga a szilimarin, szilibinin, szilidiadin és a szilikrisztin, ezeken túl és a lipofil szilimarin kompleksen kívül még számos egyéb biológiai hatékony hatékony flavonoidot (kvercetin és taxifolin) tartalmaz. A flavonoglikánok általános májvédők. Hatóanyag komplexük serkenti a sejtmag DNS polimerázának a működését, ezáltal a májsejtek szintézisét és regenerációját, stabilizálja a májsejtek membránját.
A máriatövis úgy fokozza és erősíti a máj működését, hogy megakadályozza a májban termelődő, s a méregtelenítő folyamathoz nélkülözhetetlen aminosavszere változattal, a glutatiaon kiürülését. Kísérletek igazolták, hogy a máriatövis 35%-kal képes megnövelni a glutatiaon koncentrációját.

A máriatövis a káros szabad gyökök ellen antioxidáns hatású, ilyen jellegű tulajdonságai még a C- és E-vitamin tisztasága is megfelelően. Szabadgyök-fogó tulajdonsága miatt képes a különböző mérgek (pl. a gyilkos galocában található alfa-amatin és falloidin a legerősebb szabadgyök), a nehézfémek (öalom, higany) és a biogén aminok májkárosító hatását kivédeni, segíti az anyagcsere során a szervezetben felszaporodó méreganyagok kiürülését.

A szilimarint és a szilibinin a máriatövis legerősebb és legaktívabb összetevője, gyulladáscsökkentő és antioxidáns tulajdonságokkal bír.

A szilimarint komplex anyagai sikeresen kötődnek a májsejtekhez, ezáltal hatékonyan megakadályozzák, hogy bejussanak a toxinok a májba. Ezen túlmenően a szilimarint képes semlegesíteni a toxinok hatását, amelyek már bekerültek.

A szilimarint semlegesítő hatásának köszönhetően a májsejtek hatékonyabban tudnak közdeni a xenobiotikumokkal és a biogén aminokkal szemben.

A máriatövis fokozza a máj működését és segíti a szénhidrát anyagcsere hormonális működését, az inzulin hasznosulását. Ha jobb a májfunkció, akkor jobban hasznosul a szervezetben a glükóz és a lipidek is.

A szilimarin komplex szinergistája a C-vitamin, amelyet a csipkebogyó természetes C-vitaminjával oldottunk meg.

A máriatövist gyógyászati célokkra már évezredekkel ezelőtt használták az ókori görögök és rómaiak. Májvédő hatásosságáról már Dioszkoridész és Plinius is említést tesz műveiben, de megtalálható a középkori fürveskönyvekben és Melius Juhász Péter magyar nyelvű Herbáriumában (1578) is. A közelmúltban a kutatók több kísérletet végeztek különféle gazdasági- és társ állatfajjal a máriatövis jótékony hatásának, különösen májgyógyító tulajdonságának igazolására. Az állatkísérletek során bizonyították a szabadgyök semlegesítő hatását.

A máriatövis hatóanyagai hatásosak a májat károsító, a szervezet számára ismeretlen idegen vegyi anyagok, a xenobiotikumok ellen. A máriatövis kivonat az egyéb jó tulajdonsága mellett kiváló védelmet nyújt a gombatoxinok ellen is.

Vad rózsa Rosa canina L.
Drogja a csipkebogyó (Cynosbati pseudofructus cum seminibus). A csipkebogyó kis bogyó termésében több C-vitamin van, mint egy nagy citromban. Ezen kívül A-, B1-, B2-, P- és K-vitamin is található benne.
Szabályozza az erek áteresztőképességét, erősíti az érfalakat, ezáltal gyorsítja a véráramot. Ennél fogva érszűkület, érelmeszesedés megelőzésére, kezelésére használható. Enyhe vízhajtó. A csipkemagban E-vitamin van, teája epekőoldó hatású, hólyagbántalmak ellen is hatásos. Vércukorszint-szabályozó hatása miatt cukorbetegeknek is ajánlott.

A fulvosav modul hatása:

A Földön található szerves anyag (biomassza) legnagyobb részét a humuszanyagok képezik. A humuszanyagok a Földi élet biológiai-kémiai-geológiai bomlástermékei.

A huminsavak képződésének kiindulási anyagai az elhalt fás növényi részek, melyek kémiai-biológiai oxidációs-redukciós folyamatok során keletkeznek. A fulvosavak viszonylag kis molekulájú, savas karakterű, világos sárga vagy vörösessárga színű vegyületek.
A fulvosav a huminsavak legkisebb molekulatömegű frakciója. A fulvosav minden pH tartományú vízben könnyen oldódik (a huminsavak csoportjában ez csak a fulvosavra jellemző), emellett a vékonybélben kis molekulatömegénél fogva könnyen felszívódik, kelátként és komplexként is gyakorolja ezt a tulajdonságát. A molekulában lévő savas jellegű karboxil és aromás hidroxil csoportok képesek mind kelát, mind komplex kötéseket létrehozni fémekkel és főleg bázikus szerves molekulákkal. Ez különleges képességgel ruházza fel.

A szerves és szervetlen tápanyagok, a fulvosavval képzett komplexek gyorsan és veszteség mentesen szívódnak fel a vékonybélben.

A fulvosav olyan erős, hogy egyetlen fulvosav molekula több, mint 60 elemet, vagy aminosavat képes a szervezetbe juttatni.

A fulvosav önmagában is legalább 70-féle ásványi anyagot tartalmaz, mindezeket könnyen felszívódó, biológiailag hasznosítható formában.

A fulvosav tulajdonsága révén a természetes vizek állandó alkotója. Ameddig a természet közelében éltünk és a természetes vizek tisztasága megengedte, hogy tisztítatlanul ihattuk a patakok és a folyók vízét minden nap hozzájutottunk a fulvosavhoz. A mai technológiával tisztított vizek már nem tartalmazzák a fulvosavat, mivel a szerves anyag tartalom csökkentése és a csírátlalítás során ez a hasznos szerves anyag molekula is oxidálásra kerül.

Ha mint természetes kelátképzőt használjuk a fulvosavat, akkor jobb lesz a szervezet kation és anion háztartás egyensúlya.

A szabad aminosavak nehezen szívódnak fel a bélben, ha természetes komplexképzőként használjuk a fulvosavat, akkor az aminosav-fulvosav komplex könnyedén szívódik fel. A feldolgozott élelmiszerekben lévő ízfokozó aminosavak a fulvosavval komplexet képeznek, komplex formában könnyedén felszívódnak, elkerülik a carrier molekulát igénylő, nehezen felszívódó útvonalat. Ezzel a módszerrel nem jön létre a káros biogén amin termelődés.
A fulvosav L-arginin komplex modul hatása

A nitrogén-monoxid (NO) fontos szerepet játszik a szervezet keringési rendszerének működésében. Vazodiletator, érfal-tágulat fokozó anyag, amelynek szintézise nyomán a kitágult ereken belül nagyobb volumenű a véráramlás, így az oxigén-, tápanyag- és a folyadékszállítás. Ennek megfelelően szinte minden szerv működésében javulást hoz. Az egészséges keringés fenntartásában, vagy visszaállításában, a magas vérnyomás megszüntetésében döntő szerepe van.

Az arginin a donorja a NO-nak, az arginin biztosítja a NO-ot a vazodiletatió létrejöttéhez. Az arginin hiány következménye, hogy a kapilláris vérerek endothel sejtjeiben az L-arginin hiányában nem termelődik elegendő NO, ezért nem nyílnak meg a kapilláris vérerek a vér számára. Ennek következtében romlik az egész szervezet keringése, a szövetek oxigén és táplálékhiányban szenvednek.

Miért nem termelődik elegendő NO, miért lehet arginin hiány az emberi szervezetben?

Az utóbbi években a feldolgozott élelmiszerekben egyre inkább terjed az L-lizin, mint szabad aminosav ízfokozóként való használata. A lizinnek ugyanis umami, „finom”íze van. A lizin és az arginin is kétbázisos aminosav, mind a két aminosav transzport folyamatainak segítése ugyanaz a membrán transzporter fehérje segítségével valósul meg. Emiatt a két aminosav között antagonizmus áll fenn. A szabad aminosavként adott lizin okozza az arginin hiányt a
a szervezetben.
A „finom íz” hatású lizin túlzottan nagy mennyisége nem kedvező az optimális keringés szempontjából.
A lizin felszívódása lekötö a carrier molekulákat, ezáltal zavart szenved az arginin anyagcsere, a szervezetben lokálisan arginin hiány alakul ki.
Az ilyen lizin túlsúlyú háttérben hogyan lehet bejuttatni a szervezetbe az arginint?
A fulvosavnak számunkra két kedvező tulajdonsága van. Molekula súlyánál fogva a vékonybél első szakaszán egyszerű diffúzióval könnyedén felszívódik. A molekula tömegéhez képest nagyszámú karboxil gyököt tartalmaz, amely a szabad aminosavak komplex formában való kötését teszik lehetővé.
A fulvosav a táplálékban lévő szabad aminosavakkal, különösen a két kétbázisos lizin aminosavval fulvosav-lizin komplexként szívódik fel. Ha a lizin komplexként szívódik fel, akkor nem alakul ki a lizin-arginin antagonizmus.
Az arginin felszívódása ha fulvosav-arginin komplexként történik, akkor elkerüli az aminosav antagonizmust.
Az arginin jelenléte a szervezetben lehetővé teszi a nitrogén-oxid képződését és a vazodiletáció működését. Ezen az élettani alapon működő hatás segíti a keringést és az optimális vérnyomást.
Az utóbbi időben egyre több tudományos cikk jelenik meg arról, hogy a szervezetben csak megfelelő arginin ellátása mellett biztosított a szervezet homeosztázisa. Az arginin (mint NO donor) hiánya számtalan egyensúlyi zavart indukál.

Marcin Magierowski, Katarzyna Magierowska, Sławomir Kwiecien és Tomasz Brzozowski Department of Physiology, Jagiellonian University Medical College, Cracow, Poland. Molecules 2015, 20(5), 9099-9123 cikke jól reprezentálja a No szerepének sokrétűségét a szervezetben.

Figure 1. Beneficial actions of nitric oxide (NO) in the mechanism of gastrointestinal mucosal defense.
Anitrogén-oxid (NO) biológiai hírvívő, fontos szerepet játszik az emberi szervezetben, és hozzájárulnak számos fiziológiai és patofiziológiai folyamathoz. A szervezetben a termelődő és eltérő élettani hatású NO-t az L-argininből az eddigi ismereteink szerint 4 féle NO szintetáz (NOS) enzim állítja elő.

A különböző helyeken termelődő NO-nak számtalan szerepe van a szervezetben:

- az optimális vérnyomás fenntartásában, a vérerek és kapillárisok vasodiletaciójában betöltött hatása révén,
- a sebgyógyulásban, a fibroblastok képzése révén,
- az új vérerek kiépülésében,
- csökkenti a sejtkárosodást okozó szuperoxid-diszmutáz mennyiségét,
- csökkenti a vér alakos elemeinek az adhézióját,
- segíti a sejtes immunitás megfelelő működését,
- a nyelőcső-, gyomor- és bélnyálkahártya integritása is NO függő, a Crohn- féle betegség, a colitis ulcerosa és az irritábilis bélbetegségek (IBD) kialakulásásban is van szerepe a NO hiánynak.

A fulvosav és sóiszapos parajdi só kelát modul:

A mikroelemek a fulvosavval kelátokat képeznek. A natur sóiszapos parajdi só egy temészetes elektrolit. Ez a legtermészeteesebb és leghatékonyabb Ringer-oldat. A parajdi só makroelem összetétele és az egyes elemek aránya teljesen azonos az egészséges szervezet extracelluláris folyadékterének összetételével, ezentűl még 84 féle mikroelemet tartalmaz az őstengerek több millió évé bepárolódott só természetes állapotának megfelelően.

A fulvosavhoz kötött elektrolit a vékonybél elején egy egyszerű diffúzióval kelátként könnyen felszívódik. Ezzel hozzáfegyít a szervezetet, hogy az extra- és intracelluláris folyadék terének, valamint az interstitiumnak optimális legyen ozmotikus nyomása.

A fulvosav kelátképző anyag, segíti a bél tartalomban lévő, annak ozmotikus koncentrációját növelő anyagok felszívódását. Csökkentve ezzel az ozmotikus hasmenés létrejöttének kockázatát.

Ozmozisos hasmenés abban az esetben alakul ki, ha a vastagbélben lévő bél tartalom ozmotikus nyomása nagyobb, mint a bél szöveteinek, összességében a szervezet extra- és intracelluláris folyadék terének ozmotikus nyomása.

A fulvosav a gyomorban a táplálékkal keveredve annak szervetlen formában lévő kationjait kelátkötésbe viszi és még a hasmenés esetén is hasznosul, mivel már a vékonybélben felszívódik.
Az almapektin prebiotikum modul szerepe:

A pektin bonyolult felépítésű növényi eredetű poliszacharid, mely gyümölcsökben, zöldségekben található. A pektin vízben oldódó, fermentálható rost, a vékonybélben ellenáll az emésztésnek és a felszívódásnak, a vastagbélben fermentálódik. A pektin a hasznos bélflora a Gram- pozitív tejsavtermelő baktériumok, a lactobacillusok és bifidobaktériumok és a Gram-negatív vajasavat és egyéb illó zsírsavat termelő fusobacteriumok és Bacteriodes nemzetség tagjainak a táplálék forrása.

Emiatt a hasmenés kezelésére, a gyomor és bélrendszer betegségeinek gyógyításában alkalmazzák. Egy másik gyógyhatású tulajdonsága a bevonó és védő hatása. Mivel a pektinek nagy molekulájú poliszacharidok, képesek gélt alkotni a gyomor és nyálkahártya felszínén, ami megvédi a nyálkahártyát az agresszív tényleg irritáló hatásától.

Ezek a gyógynövények, a fulvosav, mint kelát és komplexképző, a natur parajdi só, mint természetes elektrolit, fulvosav-arginin komplex és az almapektin koktél hatása jól kezelik korunk táplálkozási problémáit.

A gyógynövény összetételt, a fulvosav kelát- és komplexképzőként való használatát, az ízfokozók biológiai hasznosulásának segítését, valamint a gyártási eljárást szabadalom védi. A szabadalom tulajdonosa: Mester Károly.
Mester és Major Kft.
Szarvas